

Single/Dual Micropower Zero-Drift Operational Amplifiers

FEATURES

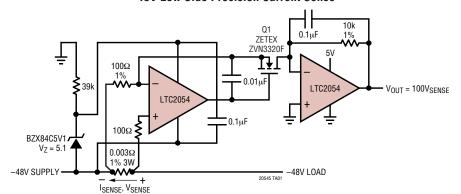
- Supply Current 150µA (Max per Amplifier)
 Guaranteed Over Temperature
- Offset Voltage 3µV (Max)
- Offset Voltage Drift 30nV/°C (Max)
- Common Mode Input Range from V⁻ to V⁺ –0.5V
- Output Swings Rail-to-Rail
- Voltage Gain: 140dB (Typ)
- PSRR and CMRR: 130dB (Typ)
- Input Bias Current: 1pA (Typ, 25°C)
- Noise: $1.6\mu V_{P-P}$ (0.01Hz to 10Hz Typ)
- Supply Operation:
 - 2.7V to 6V (LTC2054/LTC2055)
 - 2.7V to ±5.5V (LTC2054HV/LTC2055HV)
- Low Profile (1mm) SOT-23, MS8 and 3mm × 3mm × 0.8mm DFN Packages

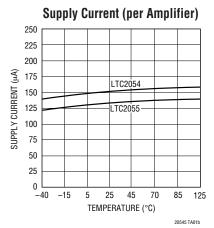
APPLICATIONS

- Thermocouple Amplifiers
- Electronic Scales
- Medical Instrumentation
- Strain Gauge Amplifiers
- High Resolution Data Acquisition
- DC Accurate RC Active Filters
- Low Side Current Sense
- Battery-Powered Systems

DESCRIPTION

The LTC®2054/LTC2055 are low power, low noise single/dual zero-drift operational amplifiers available in the SOT-23 (ThinSOTTM) and MS8 packages. For space limited applications, the LTC2055 is also available in a 3mm \times 3mm \times 0.8mm dual fine pitch leadless package (DFN). They operate from a single 2.7V minimum supply and support \pm 5V applications. The current consumption is typically $150\mu A$ for the LTC2054 and $130\mu A/amp$ for the LTC2055.

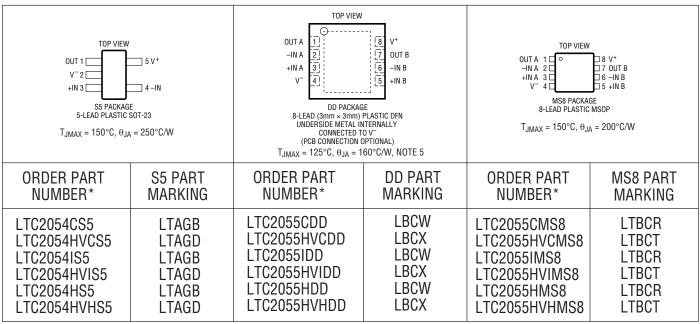

The LTC2054/LTC2055, despite their miniature size, feature uncompromising DC performance. The typical input offset voltage and offset drift are $0.5\mu V$ and $25nV/^{\circ}C$. The almost zero DC offset and drift are supported with a power supply rejection ratio (PSRR) and common mode rejection ratio (CMRR) of more than 130dB.


The input common mode voltage ranges from the negative supply up to typically 0.5V from the positive supply. The open-loop gain is typically 140dB. The LTC2054/LTC2055 also feature a 1.6 μV_{P-P} DC to 10Hz noise and a 500kHz gain-bandwidth product.

(T), LTC and LT are registered trademarks of Linear Technology Corporation. ThinSOT is a trademark of Linear Technology Corporation

TYPICAL APPLICATION

-48V Low Side Precision Current Sense



ABSOLUTE MAXIMUM RATINGS (Note 1)

Total Supply Voltage (V ⁺ to V ⁻)	
LTC2054/LTC2055	7V
LTC2054HV/LTC2055HV	12V
Input Voltage (V + + 0.3V) to ($V^ 0.3V$
Input Current	±10mÁ
Output Short-Circuit Duration	Indefinite

Operating Temperature Range	-40°C to	125°C
Specified Temperature Range (Note 3)	-40°C to	125°C
Storage Temperature Range	-65° C to	150°C
DD Package	65°C to	125°C
Lead Temperature (Soldering, 10 sec).		300°C

PACKAGE/ORDER INFORMATION

^{*}The temperature grade (C, I or H) is indicated on the shipping container. Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS (LTC2054/LTC2055, LTC2054HV/LTC2055HV) The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}$ C. $V_S = 3V$, 5V unless otherwise noted. (Note 3)

SYMBOL	PARAMETER	CONDITIONS		LTC2054C/L LTC2054I/LT MIN TYP		LTC2 MIN	2054H/LT TYP	C2055H Max	UNITS
I_S	Supply Current (LTC2054)	No Load, V _S = 3V	•	140	175		140	180	μА
		No Load, V _S = 5V	•	150	175		150	180	μА
I _S	Supply Current Per Amplifier	No Load, V _S = 3V	•	130	150		130	155	μА
	(LTC2055)	No Load, V _S = 5V	•	135	150		135	155	μА
Vos	Input Offset Voltage	(Note 2)		±0.5	±3		±0.5	±3	μV
$\Delta V_{OS}/\Delta T$	Average Input Offset Drift	(Note 2)	•	0.02	±0.03		0.02	±0.05	μV/°C
	Long-Term Offset Drift			50			50		nV/√mo
I _B	Input Bias Current (Note 4)	$V_S = 3V$ $V_S = 3V$	•	±1	±150		±1	±3000	pA pA
		$V_S = 5V$ $V_S = 5V$	•	±1	±150		±1	±3000	pA pA

ELECTRICAL CHARACTERISTICS (LTC2054/LTC2055, LTC2054HV/LTC2055HV) The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$. $V_S = 3V$, 5V unless otherwise noted. (Note 3)

SYMBOL	PARAMETER	CONDITIONS			2054C/LT 2054I/LT(TYP		LTC2	2054H/L1 TYP	C2055H MAX	UNITS
I _{OS}	Input Offset Current (Note 4)	$V_S = 3V$ $V_S = 3V$			±2	±300		±2	±700	pA pA
		V _S = 5V V _S = 5V	•		±2	±300		±2	±700	pA pA
e _n	Input Noise Voltage	$R_S = 100\Omega$, DC to 1Hz $R_S = 100\Omega$, DC to 10Hz			0.6 1.6			0.6 1.6		μV _{P-P} μV _{P-P}
CMRR	Common Mode Rejection Ratio	$V_{CM} = GND \text{ to } V^+ - 0.7V$ $V_S = 3V$	•	115 110	130		115 110	130		dB dB
		V _{CM} = GND to V ⁺ - 0.7V V _S = 5V	•	120 115	130		120 115	130		dB dB
PSRR	Power Supply Rejection Ratio	V _S = 2.7V to 6V	•	120 115	130		120 115	130		dB dB
A _{VOL}	Large-Signal Voltage Gain	$R_L = 100k, V_S = 3V, V_{OUT} = V_S/2$	•	120 115	135		120 115	135		dB dB
		$R_L = 100k, V_S = 5V, V_{OUT} = V_S/2$	•	125 120	140		125 120	140		dB dB
V _{OUT}	Output Voltage Swing High	$R_L = 5k \text{ to GND}, V_S = 3V$ $R_L = 5k \text{ to GND}, V_S = 3V$	•	2.87 2.85	2.89		2.87 2.84	2.89		V
		$R_L = 5k \text{ to GND}, V_S = 5V$ $R_L = 5k \text{ to GND}, V_S = 5V$	•	4.80 4.75	4.83		4.80 4.70	4.83		V
		R _L = 100k to GND, V _S = 3V R _L = 100k to GND, V _S = 3V	•	2.98 2.975	2.99		2.98 2.97	2.99		V
		R _L = 100k to GND, V _S = 5V R _L = 100k to GND, V _S = 5V	•	4.985 4.980	4.99		4.985 4.970	4.99		V
V _{OUT}	Output Voltage Swing Low	$R_L = 5k$ to GND, $V_S = 3V$ $R_L = 5k$ to GND, $V_S = 3V$	•		2	8 10		3	8 10	mV mV
		$R_L = 5k \text{ to GND}, V_S = 5V$ $R_L = 5k \text{ to GND}, V_S = 5V$	•		2	8 10		3	8 10	mV mV
		R _L = 100k to GND, V _S = 3V R _L = 100k to GND, V _S = 3V	•		2	8 10		3	8 10	mV mV
		R _L = 100k to GND, V _S = 5V R _L = 100k to GND, V _S = 5V	•		2	8 10		3	8 10	mV mV
SR	Slew Rate				0.5			0.5		V/µs
GBW	Gain Bandwidth Product				500			500		kHz
f _S	Internal Sampling Frequency				1			1		kHz

ELECTRICAL CHARACTERISTICS (LTC2054HV/LTC2055HV) The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$. $V_S = \pm 5V$ unless otherwise noted. (Note 3)

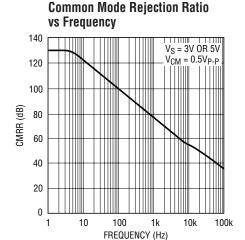
SYMBOL	PARAMETER	CONDITIONS		LTC2054F LTC2054F MIN			LTC2054F MIN	IVH/LTC	2055HVH Max	UNITS
Is	Supply Current	No Load (LTC2054)	•		175	210		175	215	μA
I _S	Supply Current (Per Amplifier)	No Load (LTC2055)	•		150	180		150	185	μA
$\overline{V_{OS}}$	Input Offset Voltage	(Note 2)			±0.5	±5		±0.5	±5	μV
$\Delta V_{OS}/\Delta T$	Average Input Offset Drift	(Note 2)	•		0.025	±0.03		0.025	±0.05	μV/°C
	Long-Term Offset Drift				50			50		nV/√mo
I _B	Input Bias Current (Note 4)		•		±3	±150		±3	±3000	pA pA
I _{OS}	Input Offset Current (Note 4)		•		±6	±300		±6	±700	pA pA
e _n	Input Noise Voltage	$R_S = 100\Omega$, DC to 1Hz $R_S = 100\Omega$, DC to 10Hz			0.6 1.6			0.6 1.6		μV _{P-P} μV _{P-P}
CMRR	Common Mode Rejection Ratio	$V_{CM} = GND \text{ to } V^+ - 0.9$	•	120 115	130		120 115	130		dB dB
PSRR	Power Supply Rejection Ratio	V _S = 2.7V to 11V	•	120 115	130		120 115	130		dB dB
AVOL	Large-Signal Voltage Gain	$R_L = 100k$, $V_{OUT} = GND$	•	125 120	140		125 120	140		dB dB
V _{OUT}	Maximum Output Voltage Swing	R _L = 5k to GND R _L = 5k to GND	•	±4.78 ±4.75	±4.82		±4.78 ±4.70	±4.82		V
		R _L = 100k to GND R _L = 100k to GND	•	±4.98 ±4.975			±4.98 ±4.97	±4.99		V
SR	Slew Rate				0.5			0.5		V/µs
GBW	Gain Bandwidth Product				500			500		kHz
f _S	Internal Sampling Frequency				1			1		kHz

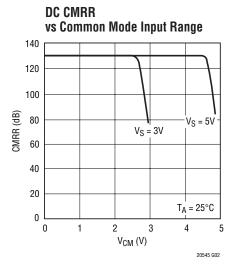
Note 1: Absolute Maximum Ratings are those values beyond which the life of the device may be impaired.

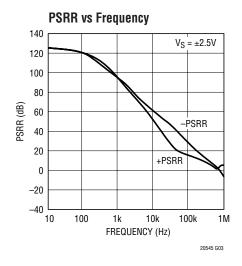
Note 2: These parameters are guaranteed by design. Thermocouple effects preclude measurements of these voltage levels during automated testing.

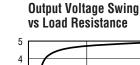
Note 3: All versions of the LTC2054/LTC2055 are designed, characterized and expected to meet the extended temperature limits of -40°C and 125°C. The LTC2054C/LTC2055C/LTC2054HVC/LTC2055HVC are guaranteed to meet the temperature limits of 0°C and 70°C. The LTC2054I/LTC2055I/LTC2054HVI/LTC2055HVI are guaranteed to meet temperature

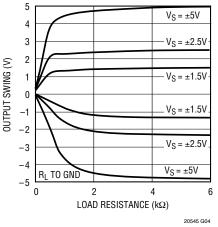
limits of -40°C and 85°C. The LTC2054H/LTC2055H and LTC2054HVH/LTC2055HVH are guaranteed to meet the temperature limits of -40°C and 125°C.

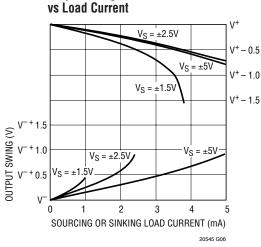

Note 4: Limit is determined by high speed automated test capability. See Typical Chacteristic curves for actual typical performance. For tighter specifications, please consult Linear Technology Marketing.

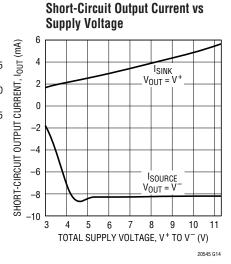

Note 5: The θ_{JA} specified for the DD package is with minimal PCB heat spreading metal. Using expanded metal area on all layers of a board reduces this value.

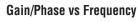

LINEAR TECHNOLOGY

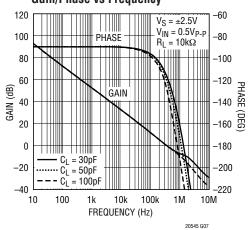

TYPICAL PERFORMANCE CHARACTERISTICS

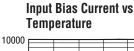

20545 G01

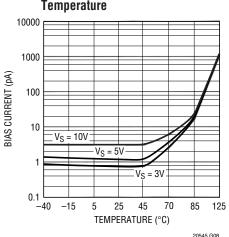


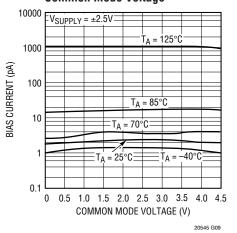


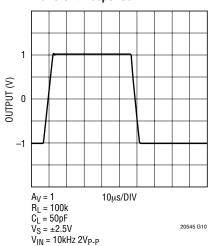


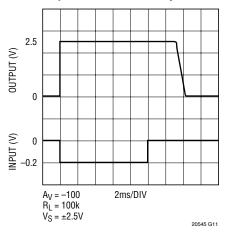




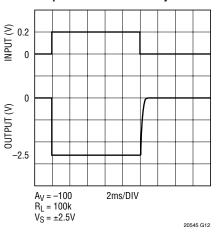

Output Swing

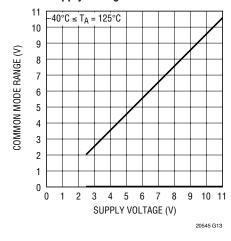


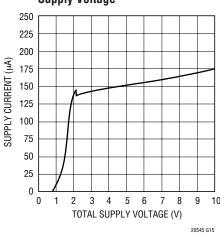

Input Bias Current vs Input Common Mode Voltage

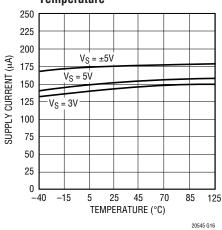


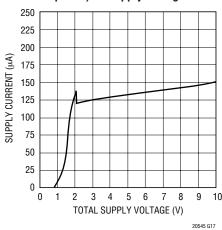
TYPICAL PERFORMANCE CHARACTERISTICS

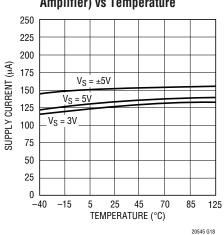

Transient Response

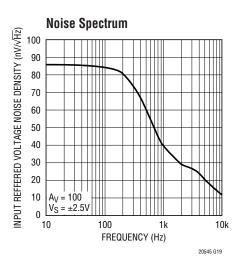

Output Overload Recovery


Output Overload Recovery


Common Mode Input Range vs Supply Voltage

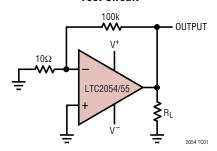

LTC2054 Supply Current vs Supply Voltage

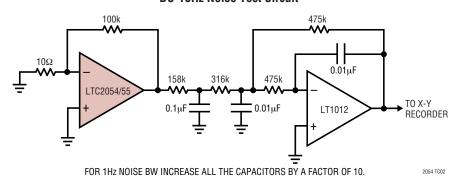

LTC2054 Supply Current vs Temperature



LTC2055 Supply Current (Per Amplifier) vs Supply Voltage

LTC2055 Supply Current (Per Amplifier) vs Temperature





TEST CIRCUITS

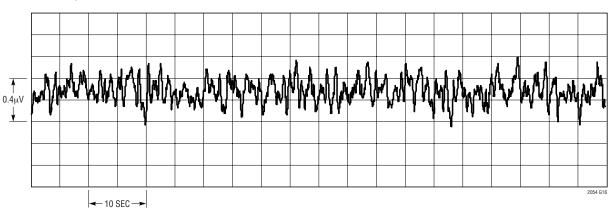
Electrical Characteristics Test Circuit

DC-10Hz Noise Test Circuit

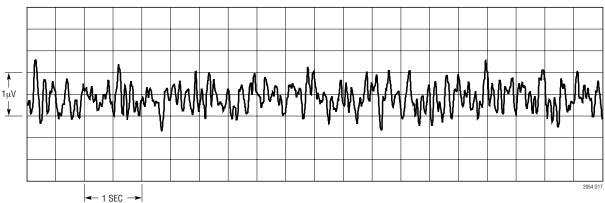
APPLICATIONS INFORMATION

Clock Feedthrough, Input Bias Current

The LTC2054 and LTC2055 use auto-zeroing circuitry to achieve an almost zero DC offset over temperature, common mode voltage, and power supply voltage. The frequency of the clock used for auto-zeroing is typically 1.0kHz. The term clock feedthrough is broadly used to indicate visibility of this clock frequency in the op amp output spectrum. There are typically two types of clock feedthrough in auto zeroed op amps like the LTC2054/LTC2055.


The first form of clock feedthrough is caused by the settling of the internal sampling capacitor and is input referred; that is, it is multiplied by the closed loop gain of the op amp. This form of clock feedthrough is independent of the magnitude of the input source resistance or the magnitude of the gain setting resistors. The LTC2054/LTC2055 have a residue clock feedthrough of less then $0.2\mu V_{RMS}$ input referred at 1.0kHz.

The second form of clock feedthrough is caused by the small amount of charge injection occurring during the sampling and holding of the op amp's input offset voltage. The current spikes are multiplied by the impedance seen at the input terminals of the op amp, appearing at the output multiplied by the closed loop gain of the op amp. To reduce this form of clock feedthrough, use smaller valued gain setting resistors and minimize the source resistance at the input. If the resistance seen at the inputs is less than 10k, this form of clock feedthrough is less than the amount of residue clock feedthrough from the first form described above.

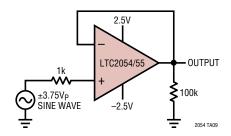

Placing a capacitor across the feedback resistor reduces either form of clock feedthrough by limiting the bandwidth of the closed loop gain.

Input bias current is defined as the DC current into the input pins of the op amp. The same current spikes that

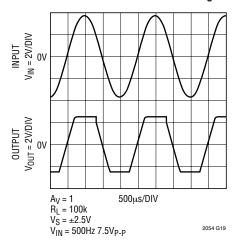
LTC2054/LTC2055 DC to 1Hz Noise

LTC2054/LTC2055 DC to 10Hz Noise

APPLICATIONS INFORMATION

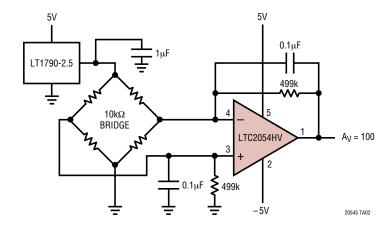

cause the second form of clock feedthrough described above, when averaged, dominate the DC input bias current of the op amp below 70°C.

At temperatures above 70°C, the leakage of the ESD protection diodes on the inputs increases the input bias currents of both inputs in the positive direction, while the current caused by the charge injection stays relatively constant. At elevated temperatures (above 70°C) the leakage current begins to dominate and both the negative and positive pins' input bias currents are in the positive direction (into the pins).


Extended Common Mode Range

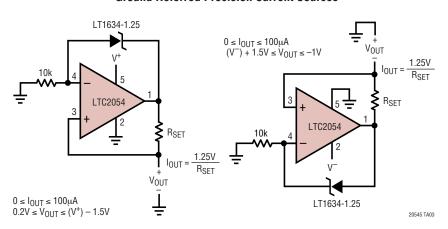
The LTC2054/LTC2055 input stage is designed to allow nearly rail-to-rail input common mode signals. In addition, signals that extend beyond the allowed input common mode range do not cause output phase inversion.

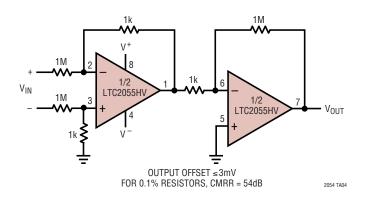
Voltage Follower with Input Exceeding the Common Mode Range



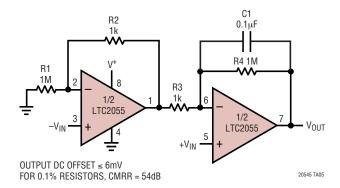
LTC2054/LTC2055
Extended Common Mode Range

TYPICAL APPLICATIONS


Simple Differential Bridge Amplifier



TYPICAL APPLICATIONS

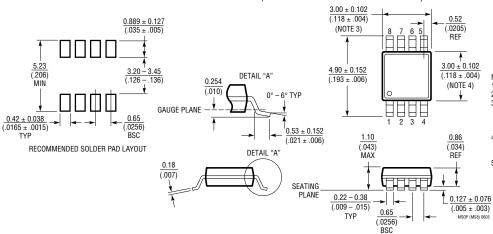

Ground Referred Precision Current Sources

Instrumentation Amplifier with 100V Common Mode Input Voltage

Gain of 1001 Single Supply Instrumentation Amplifier

PACKAGE DESCRIPTION

DD Package 8-Lead Plastic DFN (3mm × 3mm)

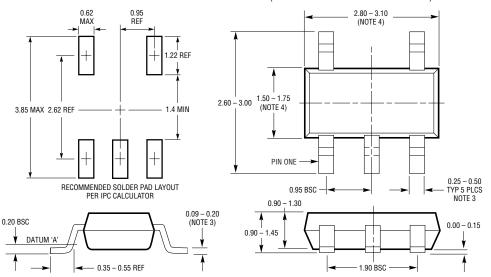

(Reference LTC DWG # 05-08-1698) R = 0.115 0.38 ± 0.10 TYP 0.675 ± 0.05 \bigvee 3.5 ± 0.05 1 65 + 0 05 2.15 ±0.05 (2 SIDES) 3.00 ±0.10 1.65 ± 0.10 (4 SIDES) (2 SIDES) PIN 1 TOP MARK PACKAGE OUTLINE 0.25 ± 0.05 0.200 REF 0.75 ±0.05 ± 0.05 -0.500.50 BSC BSC 2.38 ±0.10 2.38 ± 0.05 (2 SIDES) (2 SIDES) 0.00 - 0.05BOTTOM VIEW-EXPOSED PAD RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

NOTE:

- DRAWING TO BE MADE A JEDEC PACKAGE
 OUTLINE MO-229 VARIATION OF (WEED-1)
- 2. DRAWING NOT TO SCALE
 3. ALL DIMENSIONS ARE IN MILLIMETERS
- 4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE
 5. EXPOSED PAD SHALL BE SOLDER PLATED
- SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON TOP AND BOTTOM OF PACKAGE

MS8 Package 8-Lead Plastic MSOP

(Reference LTC DWG # 05-08-1660)

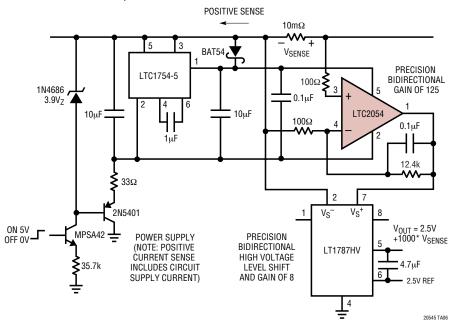


- NOTE: 1. DIMENSIONS IN MILLIMETER/(INCH)
- 2. DRAWING NOT TO SCALE
 3. DIMENSION DOES NOT INCLUDE MOLD FLASH,
 PROTRUSIONS OR GATE BURRS SHALL NOT

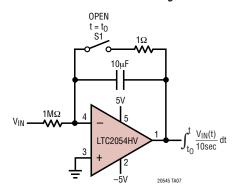
 PROTRUSIONS OR GATE BURRS SHALL NOT
- EXCEED 0.152mm (.006") PER SIDE
 4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH
 OR PROTRUSIONS. INTERLEAD FLASH OR PROTRUSIONS
- SHALL NOT EXCEED 0.152mm (.006°) PER SIDE
 5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING)
 SHALL BE 0.102mm (.004°) MAX

S5 Package 5-Lead Plastic TSOT-23

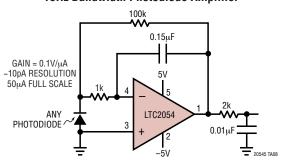
(Reference LTC DWG # 05-08-1635)


- 1. DIMENSIONS ARE IN MILLIMETERS
- 2. DRAWING NOT TO SCALE
 3. DIMENSIONS ARE INCLUSIVE OF PLATING
- 4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR
 5. MOLD FLASH SHALL NOT EXCEED 0.254mm
- 6. PACKAGE EIAJ REFERENCE IS SC-74A (EIAJ)

ATTENTION: ORIGINAL SOT23-5L PACKAGE.
MOST SOT23-5L PRODUCTS CONVERTED TO THIN SOT23
PACKAGE, DRAWING # 05-08-1635 AFTER APPROXIMATELY APRIL 2001 SHIP DATE



TYPICAL APPLICATIONS


Low Power, Bidirectional 60V Precision Hi Side Current Sense

Precision Low Drift Integrator

Ultra-Precision, Wide Dynamic Range 10Hz Bandwidth Photodiode Amplifier

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1049	Low Power Zero-Drift Op Amp	Low Supply Current 200µA
LTC1050	Precision Zero-Drift Op Amp	Single Supply Operation 4.75V to 16V, Noise Tested and Guaranteed
LTC1051/LTC1053	Precision Zero-Drift Op Amp	Dual/Quad Version of the LTC1050
LTC1150	±15V Zero-Drift Op Amp	High Voltage Operation ±18V
LTC1152	Rail-to-Rail Input and Output Zero-Drift Op Amp	Single Zero-Drift Op Amp with Rail-to-Rail Input and Output and Shutdown
LT1677	Low Noise Rail-to-Rail Input and Ouptput Precision Op Amp	$V_{OS} = 90\mu V, V_S = 2.7V \text{ to } 44V$
LT1884/LT1885	Rail-to-Rail Output Precision Op Amp	$V_{OS} = 50\mu V$, $I_B = 400 pA$, $V_S = 2.7 V$ to $40 V$
LTC2050	Zero-Drift Op Amp	Enhanced Output Drive Capability
LTC2051/LTC2052	Dual/Quad Zero-Drift Op Amp	Dual/Quad Version of the LTC2050 in MS8/GN16 Package
LTC2053	Zero-Drift Instrumentation Amp	Rail-to-Rail Input

LT/TP 0404 1K REV A · PRINTED IN USA

LINEAR
TECHNOLOGY
© LINEAR TECHNOLOGY CORPORATION 2004

PRODUCTS SOLUTIONS

DESIGN SUPPORT

PURCHASE

COMPANY

Search

ADVANCED SEARCH →

Operational Amplifiers (Op Amps)

High Speed Amplifiers Precision Amplifiers Zero Drift Amplifiers Low Noise Amplifiers Low Power Amplifiers Low Bias Current **Amplifiers High Output Current** Amplifiers Current Feedback **Amplifiers Current Sense Amplifiers** Programmable Gain Amplifiers **Differential Amplifiers Instrumentation Amplifiers** Video Functions IF Amplifiers / ADC **Drivers**

Home > Products > Signal Conditioning > Operational Amplifiers (Op Amps) > Precision Amplifiers > LTC2054

LTC2054 - Single/Dual Micropower Zero-Drift Operational Amplifiers

FEATURES DESCRIPTION PACKAGING ORDER INFO SIMULAT

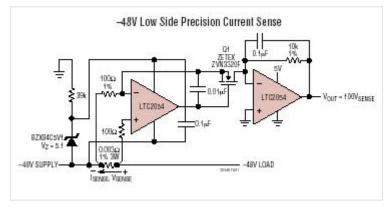
FEATURES

Supply Current 150 μ A (Max per Amplifier) Guaranteed Over Temperature Offset Voltage 3 μ V (Max) Offset Voltage Drift 30nV/°C (Max)

Common Mode Input Range from V- to V+ -0.5V

Output Swings Rail-to-Rail Voltage Gain: 140dB (Typ) PSRR and CMRR: 130dB (Typ) Input Bias Current: 1pA (Typ, 25°C) Noise: 1.6µV_{P-P} (0.01Hz to 10Hz Typ)

Supply Operation:


2.7V to 6V (LTC2054/LTC2055)

2.7V to ±5.5V (LTC2054HV/LTC2055HV)

Low Profile (1mm) SOT-23, MS8 and 3mm x 3mm x 0.8mm DFN

Packages

TYPICAL APPLICATION

Order Now

Buy →

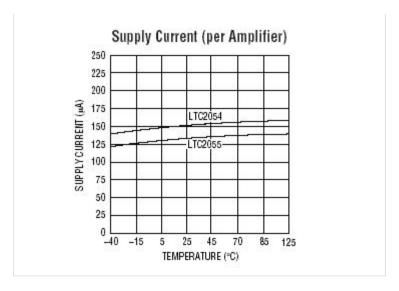
Request Samples

Documentation

Datasheet
LTC2054/LTC2055
Single/Dual Micropo
Drift Operational An

Design Note
DN355 - Op Amp S
Guide for Optimum
Performance

LT Magazine


March 2005 - Low-[
Sine Wave Oscillato
Precise RMS Ampli

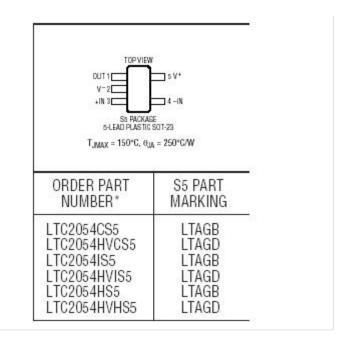
May 2004 Zero-Drif Improve Performan Power

LT Chronicle
Sept 2004 - Industri
Control

Reliability Data
R465 Reliability Dat

Software and Simulation LTC2054 SPICE Mo

DESCRIPTION


The LTC®2054/LTC2055 are low power, low noise single/dual zero-drift operational amplifiers available in the SOT-23 (ThinSOTTM) and MS8 packages. For space limited applications, the LTC2055 is also available in a 3mm × 3mm × 0.8mm dual fine pitch leadless package (DFN). They operate from a single 2.7V minimum supply and support $\pm 5V$ applications. The current consumption is typically 150µA for the LTC2054 and $130\mu A/amp$ for the LTC2055.

The LTC2054/LTC2055, despite their miniature size, feature uncompromising DC performance. The typical input offset voltage and offset drift are $0.5\mu V$ and $25nV/^{\circ}C$. The almost zero DC offset and drift are supported with a power supply rejection ratio (PSRR) and common mode rejection ratio (CMRR) of more than 130dB.

The input common mode voltage ranges from the negative supply up to typically 0.5V from the positive supply. The open-loop gain is typically 140dB. The LTC2054/LTC2055 also feature a 1.6 μ V_{P-P} DC to 10Hz noise and a 500kHz gain-bandwidth product.

BACK TO TOP

PACKAGING SOT23-5

ORDER INFO

Part numbers ending in PBF are <u>lead free</u>. Please contact LTC marketing for information on lead based finish parts.

Part numbers containing TR or TRM are shipped in tape and reel or 500

unit mini tape and reel, respectively

Please refer to our general ordering information or the product datasheet for more details

Package Variations and Pricing

Part Number	Package	Pins	Temp	Price (1-99)	Price (1k)*	RoHS Data
LTC2054CS5	<u>SOT</u>	5	С	\$1.28		<u>View</u>
LTC2054CS5#PBF	SOT	5	С	\$1.28		<u>View</u>
LTC2054CS5#TR	SOT	5	С	\$1.28	\$1.00	<u>View</u>
LTC2054CS5#TRM	SOT	5	С	\$1.28	\$1.02	<u>View</u>
LTC2054CS5#TRMPBF	SOT	5	С	\$1.28	\$1.02	<u>View</u>
LTC2054CS5#TRPBF	SOT	5	С	\$1.28	\$1.00	<u>View</u>
LTC2054HS5	SOT	5	Н	\$1.53		<u>View</u>
LTC2054HS5#PBF	SOT	5	Н	\$1.53		<u>View</u>
LTC2054HS5#TR	SOT	5	Н	\$1.53	\$1.26	<u>View</u>
LTC2054HS5#TRM	SOT	5	Н	\$1.53	\$1.28	<u>View</u>
LTC2054HS5#TRMPBF	SOT	5	Н	\$1.53	\$1.28	<u>View</u>
LTC2054HS5#TRPBF	SOT	5	Н	\$1.53	\$1.26	View
LTC2054HVCS5	SOT	5	С	\$1.58		<u>View</u>
LTC2054HVCS5#PBF	SOT	5	С	\$1.58		<u>View</u>
LTC2054HVCS5#TR	SOT	5	С	\$1.58	\$1.25	View
LTC2054HVCS5#TRM	SOT	5	С	\$1.58	\$1.27	<u>View</u>
LTC2054HVCS5#TRMPBF	SOT	5	С	\$1.58	\$1.27	<u>View</u>
LTC2054HVCS5#TRPBF	SOT	5	С	\$1.58	\$1.25	<u>View</u>

LTC2054HVHS5	SOT	5	Н	\$1.88		<u>View</u>
LTC2054HVHS5#PBF	SOT	5	Н	\$1.88		<u>View</u>
LTC2054HVHS5#TR	SOT	5	Н	\$1.88	\$1.56	<u>View</u>
LTC2054HVHS5#TRM	SOT	5	Н	\$1.88	\$1.58	View
LTC2054HVHS5#TRMPBF	SOT	5	Н	\$1.88	\$1.58	<u>View</u>
LTC2054HVHS5#TRPBF	SOT	5	Н	\$1.88	\$1.56	<u>View</u>
LTC2054HVIS5	SOT	5	I	\$1.88		<u>View</u>
LTC2054HVIS5#PBF	SOT	5	I	\$1.88		View
LTC2054HVIS5#TR	SOT	5	I	\$1.88	\$1.56	<u>View</u>
LTC2054HVIS5#TRM	SOT	5	I	\$1.88	\$1.58	<u>View</u>
LTC2054HVIS5#TRMPBF	SOT	5	I	\$1.88	\$1.58	<u>View</u>
LTC2054HVIS5#TRPBF	SOT	5	I	\$1.88	\$1.56	View
LTC2054IS5	SOT	5	I	\$1.53		<u>View</u>
LTC2054IS5#PBF	SOT	5	I	\$1.53		<u>View</u>
LTC2054IS5#TR	SOT	5	I	\$1.53	\$1.26	<u>View</u>
LTC2054IS5#TRM	SOT	5	I	\$1.53	\$1.28	View
LTC2054IS5#TRMPBF	SOT	5	I	\$1.53	\$1.28	<u>View</u>
LTC2054IS5#TRPBF	SOT	5	I	\$1.53	\$1.26	<u>View</u>
	Buy N	low				
	Request S	Sampl	<u>es</u>			

* The USA list pricing shown is for BUDGETARY USE ONLY, shown in United States dollars (FOB USA per unit for the stated volume), and is subject to change. International prices may differ due to local duties, taxes, fees and exchange rates. For volume-specific price or delivery quotes, please contact your local Linear Technology sales office or authorized distributor.

BACK TO TOP

APPLICATIONS

Thermocouple Amplifiers
Electronic Scales
Medical Instrumentation
Strain Gauge Amplifiers
High Resolution Data Acquisition
DC Accurate RC Active Filters
Low Side Current Sense
Battery-Powered Systems

BACK TO TOP

SIMULATE

Linear Technology offers several options for simulating our high performance operational amplifiers.

<u>Download the SPICE model for the LTC2054</u> (or right click and select "Save Target As" to save the file to disk)

Download SPICE models for the complete collection of LTC op amps

LTSpice / SwitcherCAD III is a powerful FREE circuit simulator and schematic capture program. Included in this download are LTSpice, Macro Models for 80% of Linear Technology's switching regulators, over 200 op amp models, as well as resistors, transistors and MOSFET models. Download it now!

PRODUCTS SOLUTIONS

DESIGN SUPPORT

PURCHASE

COMPANY

Search

ADVANCED SEARCH →

Operational Amplifiers (Op Amps)

High Speed Amplifiers Precision Amplifiers Zero Drift Amplifiers Low Noise Amplifiers Low Power Amplifiers Low Bias Current Amplifiers **High Output Current** Amplifiers Current Feedback **Amplifiers Current Sense Amplifiers** Programmable Gain Amplifiers **Differential Amplifiers Instrumentation Amplifiers** Video Functions IF Amplifiers / ADC **Drivers**

Home > Products > Signal Conditioning > Operational Amplifiers (Op Amps) > Precision Amplifiers > LTC2055

LTC2055 - Single/Dual Micropower Zero-Drift Operational Amplifiers

FEATURES DESCRIPTION PACKAGING ORDER INFO SIMULAT

FEATURES

Supply Current 150µA (Max per Amplifier) Guaranteed Over Temperature Offset Voltage 3µV (Max) Offset Voltage Drift 30nV/°C (Max)

Common Mode Input Range from V- to V+ -0.5V Output Swings Rail-to-Rail Voltage Gain: 140dB (Typ)

PSRR and CMRR: 130dB (Typ) Input Bias Current: 1pA (Typ, 25°C) Noise: 1.6µV_{P-P} (0.01Hz to 10Hz Typ)

Supply Operation: 2.7V to 6V (LTC2054/LTC2055)

2.7V to 6V (ETG2034/ETG2033) 2.7V to ±5.5V (LTC2054HV/LTC2055HV)

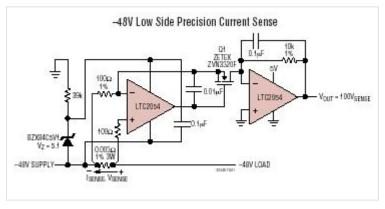
Low Profile (1mm) SOT-23, MS8 and 3mm x 3mm x 0.8mm DFN

Packages

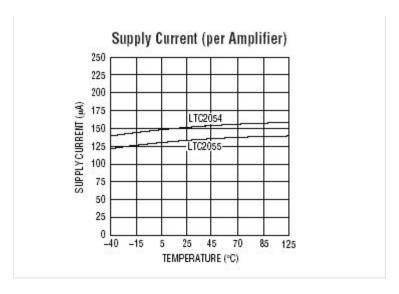
Order Now

Request Samples

Documentation


Datasheet
LTC2054/LTC2055
Single/Dual Micropo
Drift Operational An

LT Magazine
May 2004 Zero-Drif
Improve Performani
Power

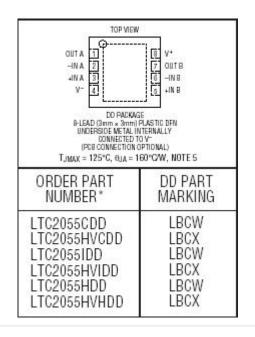

Reliability Data R465 Reliability Dat

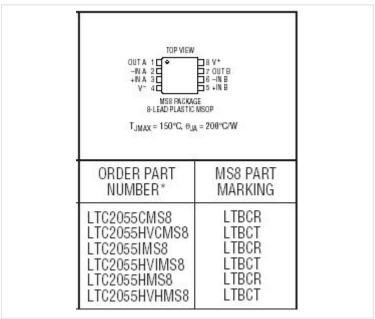
Software and Simulation LTC2055 SPICE Mo

TYPICAL APPLICATION

SITE HELP SITE MAP SITE INDEX SEND US FEEDBACK © 2007 Linear Technology | Terms of Use | Privacy Policy

DESCRIPTION


The LTC®2054/LTC2055 are low power, low noise single/ dual zero-drift operational amplifiers available in the SOT-23 (ThinSOTTM) and MS8 packages. For space limited applications, the LTC2055 is also available in a 3mm x 3mm x 0.8mm dual fine pitch leadless package (DFN). They operate from a single 2.7V minimum supply and support $\pm 5V$ applications. The current consumption is typically 150 μ A for the LTC2054 and 130 μ A/amp for the LTC2055.


The LTC2054/LTC2055, despite their miniature size, feature uncompromising DC performance. The typical input offset voltage and offset drift are $0.5\mu V$ and $25nV/^{\circ}C$. The almost zero DC offset and drift are supported with a power supply rejection ratio (PSRR) and common mode rejection ratio (CMRR) of more than 130dB.

The input common mode voltage ranges from the negative supply up to typically 0.5V from the positive supply. The open-loop gain is typically 140dB. The LTC2054/LTC2055 also feature a 1.6µV $_{\rm P-P}$ DC to 10Hz noise and a 500kHz gain-bandwidth product.

BACK TO TOP

PACKAGING DFN-8,MS-8

ORDER INFO

Part numbers ending in PBF are <u>lead free</u>. Please contact LTC marketing for information on lead based finish parts.

Part numbers containing TR or TRM are shipped in <u>tape and reel or 500</u> unit mini tape and reel, respectively

Please refer to our <u>general ordering information</u> or the product datasheet for more details

Package Variations and Pricing

Part Number	Package	Pins	Temp	Price (1-99)	Price	RoHS Data
				(100)	(IN)	Data

LTC2055CDD	DFN	8	lc	\$2.57	\$1.80	View
LTC2055CDD#PBF	DFN	18	lc	\$2.57	\$1.80	View
LTC2055CDD#TBI	DFN	18		ψ2.51	\$1.86	View
LTC2055CDD#TRPBF	DFN	18	lc		\$1.86	View
		8	lc	¢2.20	Ë	
LTC2055CMS8	MSOP	╬═	-	\$2.29	\$1.60	<u>View</u>
LTC2055CMS8#PBF	MSOP	8	C	\$2.29	\$1.60	<u>View</u>
LTC2055CMS8#TR	MSOP	8	C		\$1.66	<u>View</u>
LTC2055CMS8#TRPBF	MSOP	8	С		\$1.66	View
LTC2055HDD	<u>DFN</u>	8	Н	\$3.02	\$2.12	<u>View</u>
LTC2055HDD#PBF	<u>DFN</u>	8	Н	\$3.02	\$2.12	<u>View</u>
LTC2055HDD#TR	<u>DFN</u>	8	Н		\$2.18	<u>View</u>
LTC2055HDD#TRPBF	DFN	8	Н		\$2.18	<u>View</u>
LTC2055HMS8	MSOP	8	Н	\$2.73	\$1.92	<u>View</u>
LTC2055HMS8#PBF	MSOP	8	Н	\$2.73	\$1.92	<u>View</u>
LTC2055HMS8#TR	MSOP	8	Н		\$1.98	View
LTC2055HMS8#TRPBF	MSOP	8	Н		\$1.98	View
LTC2055HVCDD	DFN	8	С	\$3.14	\$2.20	View
LTC2055HVCDD#PBF	DFN	8	С	\$3.14	\$2.20	View
LTC2055HVCDD#TR	DFN	18	С		\$2.26	View
LTC2055HVCDD#TRPBF	DFN	8	С		\$2.26	View
LTC2055HVCMS8	MSOP	18	С	\$2.86	\$2.00	View
LTC2055HVCMS8#PBF	MSOP	18	lc	\$2.86	\$2.00	View
LTC2055HVCMS8#TR	MSOP	18	lc	Ψ2.00	\$2.06	View
LTC2055HVCMS8#TRPBF	MSOP	8	lc		\$2.06	View
		:==	:	¢2.74		
LTC2055HVHDD	<u>DFN</u>	8	IH II	\$3.71	\$2.60	View
LTC2055HVHDD#PBF	<u>DFN</u>	8	H II	\$3.71	\$2.60	<u>View</u>
LTC2055HVHDD#TR	DFN	8	H II		\$2.66	<u>View</u>
LTC2055HVHDD#TRPBF	<u>DFN</u>	8	Н		\$2.66	<u>View</u>
LTC2055HVHMS8	MSOP	8	Н	\$3.43	\$2.40	<u>View</u>
LTC2055HVHMS8#PBF	MSOP	8	H	\$3.43	\$2.40	<u>View</u>
LTC2055HVHMS8#TR	MSOP	8	Н		\$2.46	<u>View</u>
LTC2055HVHMS8#TRPBF	MSOP	8	Н		\$2.46	<u>View</u>
LTC2055HVIDD	DFN	8	I	\$3.71	\$2.60	<u>View</u>
LTC2055HVIDD#PBF	<u>DFN</u>	8	I	\$3.71	\$2.60	<u>View</u>
LTC2055HVIDD#TR	DFN	8	I		\$2.66	<u>View</u>
LTC2055HVIDD#TRPBF	<u>DFN</u>	8	I		\$2.66	<u>View</u>
LTC2055HVIMS8	MSOP	8	Ī	\$3.43	\$2.40	View
LTC2055HVIMS8#PBF	MSOP	8	ī	\$3.43	\$2.40	View
LTC2055IDD	DFN	8		\$3.02	\$2.12	View
LTC2055IDD#PBF	DFN	8		\$3.02	\$2.12	View
LTC2055IDD#TR	DFN	8			\$2.18	View
LTC2055IDD#TRPBF	DFN	18			\$2.18	View
LTC2055IMS8	MSOP	8		\$2.73	\$1.92	View
LTC2055IMS8#PBF	MSOP	8	<u> </u>	\$2.73	\$1.92	View
LTC2055IMS8#TR	MSOP	18) <u> </u> 	Ψ2.10	\$1.98	View
LTC2055IMS8#TRPBF	MSOP] 0 8] <u> '</u> 		\$1.98	
LI OZUJJINIOO# I KPDF	IVISOP	Πο	<u> </u>		φ1.30	View

Buy Now Request Samples

* The USA list pricing shown is for BUDGETARY USE ONLY, shown in United States dollars (FOB USA per unit for the stated volume), and is subject to change. International prices may differ due to local duties, taxes, fees and exchange rates. For volume-specific price or delivery quotes, please contact your local Linear Technology sales office or authorized distributor.

BACK TO TOP

APPLICATIONS

Thermocouple Amplifiers
Electronic Scales
Medical Instrumentation
Strain Gauge Amplifiers
High Resolution Data Acquisition
DC Accurate RC Active Filters
Low Side Current Sense
Battery-Powered Systems

BACK TO TOP

SIMULATE

Linear Technology offers several options for simulating our high performance operational amplifiers.

Download SPICE models for the complete collection of LTC op amps

LTSpice / SwitcherCAD III is a powerful FREE circuit simulator and schematic capture program. Included in this download are LTSpice, Macro Models for 80% of Linear Technology's switching regulators, over 200 op amp models, as well as resistors, transistors and MOSFET models. Download it now!

BACK TO TOP